Review Article
Role of toll-like receptors in multiple sclerosis

Socorro Miranda-Hernandez, Alan G Baxter

Comparative Genomics Centre, Molecular Sciences Building 21, James Cook University, Townsville, QLD 4811, Australia

Received December 12, 2012; Accepted January 16, 2013; Epub February 27, 2013; Published March 9, 2013

Abstract: Multiple Sclerosis (MS) is an autoimmune disease in which Central Nervous System (CNS) lesions result from perivascular immune cell infiltration associated with damage to myelin, oligodendrocytes and neurons. CNS autoimmunity and its regulation are dominated by the inflammatory cytokines IL17 and IFNγ, and the opposing regulatory cytokines IL10 and the type I IFNs. Toll-like receptors (TLR) play a critical role in modulating cytokine and chemokine secretion in response to exogenous Pathogen Associated to Molecular Patterns and endogenous Danger-Associated to Molecular Patterns. Here, we systematically examine the evidence that TLR play a major role in the initiation disease, the triggering of relapses, and regulation of CNS damage. Data from human studies are supported analyses of a variety of animal models, including Experimental Autoimmune Encephalomyelitis in TLR-deficient mice.

Keywords: Multiple sclerosis, toll-like receptors, hygiene hypothesis, microbial flora, gene/environment interactions, autoimmunity, TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10

Introduction

Multiple Sclerosis (MS) is an autoimmune disease in which Central Nervous System (CNS) lesions result from perivascular immune cell infiltration associated with damage to myelin, oligodendrocytes and neurons. Clinically, symptoms include numbness, weakness, loss of muscle coordination, and problems with vision, speech, and bladder control. The timing and severity of each attack are unpredictable, and can vary in severity from being detected only by magnetic resonance imaging or neural conduction studies, to being devastating, leaving the patient severely disabled. Three patterns of disease are seen: relapsing-remitting (RRMS), in which episodic exacerbations are separated by periods of recovery, secondary progressive (SPMS), which can develop in patients who initially present with RRMS and is characterized by progressive disability, and primary progressive (PPMS), in which disability progresses steadily from disease onset.

The evidence that MS is an autoimmune disease includes the following features it shares with other autoimmune diseases: an HLA association [1]; associations with other autoimmune diseases and their autoantibodies [2]; the presence of oligoclonal autoreactive T and B cell expansion in the target organ [3, 4]; therapeutic efficacy of corticosteroids [5], plasmapheresis [6] and antilymphocyte globulin [7]; and cure by lymphoid ablation and autologous haematopoietic cell transplantation [8].

The immune system responds to many environmental stimuli by the maturation of antigen presenting cells (APCs) and activation of lymphocytes via cellular receptors such as Toll-like receptors (TLR; [9, 10]). TLR mediate responses to autologous components, termed Danger-Associated to Molecular Patterns (DAMPs; e.g., high mobility group box 1 (HMGB1), heat shock protein 70 (HSP70), heat shock protein 90 (HSP90), and cellular RNA), and microbial constituents, termed Pathogen Associated to Molecular Patterns (PAMPs; e.g., lipoproteins or lipopeptides, peptidoglycans, lipopolysaccharides (LPS), single stranded ribonucleic acid (ssRNA), double stranded ribonucleic acid (dsRNA) and CpG-DNA). TLR ligation can trigger inflammation, prime adaptive immune responses and initiate leukocyte migration [11-14].
In MS, leukocytes such as monocytes, dendritic cells (DCs), NK cells, CD4+ and CD8+ T cells and B cells, migrate to the CNS and mediate myelin destruction, axon damage and neuronal cell death [15-17]. Both infiltrating and resident cells of the CNS express TLRs and their expression increases in MS [18-20]. While potentially involved in the pathogenesis of disease, raised
TLR expression in the CNS has also been implicated in neuro-protective and restorative functions [21-23].

Toll-like receptor one in multiple sclerosis

TLR1 is expressed as a heterodimer with TLR2, and binds bacterial triacyl lipopeptides. It is widely expressed on the APC monocytes, macrophages, DC and B cells. It is also expressed on Human NT2-N and CHP-212 neuronal cell lines [19, 20, 24] and has been identified by RT PCR on microglia [25]. TLR1 is down regulated in peripheral blood mononuclear cells (PBMC) of MS patients and up regulated in patients treated with INFβ [26, 27].

Toll-like receptor two in multiple sclerosis

TLR2 is expressed as both a homodimer and as a heterodimer, partnered with either TLR1 or TLR6. It is expressed on monocytes, macrophages and myeloid DC, and can bind a wide range of ligands, including lipoteichoic acid from Gram-positive bacteria, bacterial lipopeptides and glycolipids, fungal beta glucan (zymosan) and the endogenous DAMPs Hyaluronan, HSP70 and HMGB1. TLR2 has been identified on CNS endothelial cells, microglia, astrocytes and oligodendrocytes [25, 28] and on infiltrating cells in MS (Figure 1). It is up regulated on PBMCs, cerebrospinal fluid (CSF) mononuclear cells and in demyelinating lesions of MS patients [19, 20, 24, 25, 29].

MS relapses have been reported during bacterial infections [30]. Monocyte-derived dendritic cells from MS patients with bacterial infections express high levels of HLA-DR and costimulators than those from uninfected patients and drive higher production of IL12, IL17 and INFγ [31]. Several TLR2 ligands have been identified in the brains and CSF of MS patients. For example, the TLR2 ligand peptidoglycan, a major component of the Gram-positive bacterial cell walls, has been reported as present in the brains of MS patients within macrophage/DC-like APC that express co-stimulatory molecules (CD80, CD86 and CD40) and proinflammatory cytokines (IL1α, IL6, IL12, TNF and INFγ) [32]. High numbers of macrophages and microglia expressing the endogenous TLR2 ligand HMGB1 are also found in acute and RRMS [33]. The migration and differentiation of oligodendrocyte precursor cells (OPC) play important roles in myelin repair after inflammatory damage. MS lesions contain hyaluronan deposits that, once fragmented by the hyaluronidases expressed by OPCs, inhibit the maturation of OPC and remyelination via TLR2 ligation [10, 29, 34].

The TLR2 ligand zymosan can modulate the severity of MS by inducing peripheral blood DC from MS patients treated with INFβ to secrete IL10, which suppresses IL23 and IL1β production [35]. Similarly, surface expression of TLR2 on B cells and DC was significantly higher in helminth-infected MS patients, who had better clinical and radiological outcomes than uninfected patients. Protection was associated with regulatory T cell induction and increased TGFβ and IL10 levels. In contrast, immunization with S. pneumoniae exacerbates MS [36].

Toll-like receptor three in multiple sclerosis

TLR3 is expressed in DC and B cells and binds double-stranded (viral) RNA and the endogenous microtubule regulator stathmin. TLR3 ligation induces the activation of NF-κB via the adaptor TRIF to increase production of type I interferons. Cerebral endothelial cells [28], neurons, microglia, astrocytes and oligodendrocytes express TLR3 [19, 25, 37, 38]. Normal adult human astrocytes increase the production of anti-inflammatory cytokines such as IL10 and down regulate proinflammatory cytokines such as IL12 (p40) and IL23 in response to TLR3 ligation [25]. The endogenous TLR3 ligand stathmin was identified in astrocytes, microglia, and neurons of MS-affected human brain, and was shown by cDNA arrays to initiate the same set of neuroprotective factors as the synthetic TLR3 agonist polyinosinic: polycytidylic (poly I:C) acid [39].

Association studies of TLR3 sequence variants have failed to identify any significant association with MS [40, 41].

Toll-like receptor four in multiple sclerosis

TLR4 is expressed on monocytes and macrophages, myeloid DC and T and B lymphocytes, as well as intestinal epithelium. It can bind LPS from Gram-negative bacteria, bacterial and endogenous HSP, as well as the endogenous ligands HMGB1, fibrinogen, heparan sulphate and hyaluronic acid.
TLR4 expression has been identified in cerebral endothelial cells [28] and microglia by RT-PCR [25]. Both TLR4 and its endogenous ligand HMGB1 are increased in expression in the CSF mononuclear cells of MS patients compared to healthy controls [33]. Association studies of functional (missense) mutations in TLR4 (Asp299Gly and Thr399Ile) failed to identify any association with MS [42, 43]. A subsequent study of nine TLR4 single nucleotide polymorphisms (SNP) tested for association with MS in 362 MS patients and 467 healthy controls also failed to identify any significantly associated loci [44].

Toll-like receptor five in multiple sclerosis

TLR5 binds bacterial flagellin and is expressed on monocytes and macrophages, some DC and intestinal epithelium; its expression has been identified in microglia by RT-PCR [25]. Little has been published on any role it may play in MS.

Toll-like receptor six in multiple sclerosis

TLR6 is expressed on monocytes and macrophages, B cells and mast cells and it binds to diacyl lipopeptides from Mycoplasma. It has been identified in cerebral endothelial cells and microglia by RT-PCR [25]. The TLR6 SNP rs5743810 was associated with the development of INFβ-specific neutralizing antibodies in men but not in women after 24 month of treatment with INFβ [23].

Toll-like receptor seven in multiple sclerosis

TLR7 is expressed in monocytes and macrophages, plasmacytoid DC and B cells, and binds to single-stranded (viral) RNA. TLR7 expression has been identified in microglia by RT-PCR [25]. The pro-inflammatory cytokine IL17 plays a critical role in the immunopathogenesis of MS and EAE [45-49] and its production is downregulated by type I IFNs [50, 51]. In vitro treatment of human monocyte-derived DCs with IFNβ1a induced the expression of TLR7 and, in a TLR7-dependent fashion, the members of its downstream signaling pathway (MyD88, IRAK4, and TRAF6), but inhibited the expression of IL1R. TLR7 expression was also necessary for IFNβ1a-induced secretion of IL27 by DCs and the inhibition of IL1β and IL23. Supernatants from IFNβ1a-treated DCs inhibited Th17 differentiation of CD4 T cells, with down regulation of retinoic acid-related orphan nuclear hormone receptor C (RORC) and IL17A gene expression and IL17A secretion. Again, inhibition of IL17A was TLR7 dependent and could be blocked by TLR7 siRNA silencing [52].

At the onset of MS, a subset of patients (11 of 61) expressed elevated mRNA levels of TLR7, together with RIG-1 and IFIH1 – an IFN expression signature potentially attributable to an overactivity of IFN-stimulated gene factor 3 (ISGF3, a complex formed by STAT1, STAT2 and IFN regulatory factor 9). This phenotype was shared by a subset of healthy control subjects [53]. Patients with a relatively high IFN expression signature at baseline showed no significant modulation in the expression of the genes involved in IFN-related pathways during IFNβ therapy. In contrast, patients with a low endogenous IFN gene signature showed strong gene induction after 1 month of treatment [53].

Toll-like receptor eight in multiple sclerosis

TLR8 is expressed on monocytes and macrophages, a subset of DC and mast cells; it binds to single stranded (viral) RNA. TLR8 expression has also been identified in microglia by RT-PCR [25]. As is the case for TLR7, at the onset of MS, a subset of patients and healthy controls express elevated mRNA levels of TLR8, as part of an endogenous IFN gene signature [53].

Toll-like receptor nine in multiple sclerosis

TLR9 is expressed in monocytes and macrophages, plasmacytoid DC and B cells; it binds to unmethylated CpG DNA, which is present in bacteria and DNA viruses. TLR9-expressing plasmacytoid DC are present in the leptomeninges and demyelinating lesions of patients with MS. Plasmacytoid DC are a major source of type I IFN, and secrete IFNα in response to TLR9 ligation within the early endosomes [54] and this response is enhanced in untreated patients with MS [55]. INFβ treatment downregulates the expression of TLR9 in MS patients with a low endogenous IFN gene signature [53] and inhibits TLR9 processing (activation) and TLR9 ligation-induced secretion of IFNα by plasmacytoid DC in all treated patients [55, 56].
Following stimulation of TLR9 by CpG-DNA (with or without stimulation via the B cell receptor and CD40), the B cells of MS patients secrete more lymphotoxin (LT), TNF and IL12, and less IL10, than those of healthy controls [57, 58]. The TLR9-stimulated production of IL10 correlates with TLR9 expression levels in CD27+ (memory) B cells, which is significantly reduced in MS patients [58].

Toll-like receptor ten in multiple sclerosis

Little is known about TLR10, its tissue distribution, its specificity or any possible role in MS.

Toll-like receptor eleven in multiple sclerosis

TLR11 is expressed on monocytes and macrophages, as well as in the liver and in kidney and urinary bladder epithelial cells. It binds profilin from the parasite *Toxoplasma gondii* and an unidentified ligand from uropathogenic *Escherichia coli*. Little has been published on any role TLR11 may play in MS.

Animal models of multiple sclerosis

Clinical research of MS is supported by animal models of the pathogenesis and immunoregulation of CNS autoimmunity. Commonly used models in the research of MS include:

Cuprizone

Cuprizone is a copper chealator that induces oligodendrocyte cell death, reversible demyelination, axonal injury and microglial activation [59, 60]. It is used to model aspects of demyelination, OPG migration and activation, and remyelination.

Theiler's murine encephalomyelitis virus

Theiler's murine encephalomyelitis virus (TMEV) is a single stranded RNA murine cardiovirus used to infect genetically susceptible mice (e.g. SJL strain) intra-cerebrally, resulting in persistent infection and chronic demyelinating disease [61]. The TMEV DA strain infects astrocytes, microglia and macrophages, resulting in chronic encephalomyelitis that resembles the chronic and progressive forms of MS [62, 63]. The disease can also be induced in resistant mouse strains (e.g. C57BL/6 strain) by activating innate immunity with two LPS injections after TMEV infection [61].

Experimental autoimmune encephalomyelitis

Experimental autoimmune encephalomyelitis (EAE) is a family of models of autoimmune CNS damage induced by the immunization of experimental animals with CNS components (either an extract, purified protein or a peptide), usually in the presence of an adjuvant [64].

Experimental autoimmune encephalomyelitis

The pathogenesis of CNS damage caused by EAE, and the specific CNS components targeted, are affected by strain and species of animal, choice of antigen (e.g. myelin oligodendrocyte glycoprotein (MOG), proteolipid protein (PLP) or myelin basic protein (MBP)) and adjuvant (e.g. Complete Freund's Adjuvant (CFA), CpG, LPS or Pertussis toxin (PTX)), and whether the disease studied is active (i.e. that occurring in the immunised individual) or passive (i.e. that occurring in the recipient of adoptively transferred T cells from the immunised individual). Various combinations can result in monophasic, relapsing–remitting or chronic EAE [65, 66].

As a generalization, EAE in mice is associated with an autoimmune CD4 T cell response dominated by the production of IFNγ and IL6, IL23 and IL17; features it shares with MS [66-72]. Damage to the blood-brain barrier permits the influx of monocytes and macrophages, DCs, NK cells, CD4+ and CD8+ T cells, NKT cells and B-lymphocytes. CNS resident cells respond with astrocytic hypertrophy, microglial activation and OPG migration and activation [38, 73-76]. The model is characterized by autoantibody production and inflammation, demyelination, axon damage and atrophy of the CNS [77-80]. CNS inflammation in the mouse model is predominately restricted to the spinal cord, causing an ascending flaccid paralysis that starts in the tail and progresses to the hind limbs and then the forelimbs [66].

Responses to the antigens administered are associated with the generation of auto-reactive T cells and the induction of autoantibodies [81]. While disease can occur in the absence of adjuvant, the rate of onset, incidence and severity of disease are all enhanced by the administration of adjuvant at the time of immunization [64]. CFA is the most commonly used [82]. PTX is believed to facilitate leucocyte infiltration.
into the CNS [83], increase secretion of IL12 and IL6 [84, 85], decrease production of IL10 and decrease differentiation of CD4+CD25+ regulatory T cells (Tregs; [86]).

This system has significant limitations in modeling some aspects of MS, but these limitations are generally well characterized: i) The initiation is unlikely to reflect a natural correlate in MS; ii) Where a single protein or peptide has been introduced, the diversity of antigenic targets seen in MS is not reflected; iii) As disease is induced by introduction of an extrinsic antigen, the roles of MHC class I presentation and CD8 T cells in induction are completely absent, and in pathogenesis are imperfectly modelled; and iv) Not all molecular and cellular components of the immune system have identical functions in non human species.

These limitations have resulted in failure of some therapies identified in preclinical studies to exhibit significant activity in clinical trials. In particular, therapies targeted at specific HLA/peptide/TCR interactions resulting from EAE studies using defined induction antigens have performed poorly (reviewed in Baxter, [64]). Nevertheless, EAE has been, and remains, a critically important model system for studying many aspects of CNS autoimmunity, such as: immune cell trafficking, CNS entry and apoptosis; roles of endogenous and infiltrating cells in CNS damage and repair; interactive cellular and cytokine networks; and the immunoregulation of remission and relapse. To date, every effective therapy for MS has been successfully trialed in EAE.

The mouse model of EAE has a particular advantage in studying the roles of TLR in CNS autoimmunity, because it provides a well-validated platform for specific gene deletion.

MyD88 in animal models of multiple sclerosis

There is a consensus that EAE is dependent on MyD88 [87-89], an adaptor protein for both TLR and cytokine signaling [90, 91]. The cytoplasmic portions of TLR receptors include a conserved motif, termed the toll/interleukin-1 receptor (TIR) domain. The TIR domains of TLRs are homologous with the respective domain of the interleukin 1 receptor (IL1R) and the cytoplasmic adaptor protein family. The TIR domains of the adaptor proteins interact with those of TLRs or IL1R and trigger the activation of downstream protein kinases and multiple transcription factors, including the NFκB family. All TLR except TLR3 signal through the adaptor protein MyD88; TLR3 signals through a MyD88-independent, TRIF-dependent pathway and TLR4 uses both MyD88-dependent and -independent pathways [92].

Increased expression of MyD88 mRNA was found in the MOG35-55/CFA+PTX induced model of EAE in C57BL/6 mice [87] and targeted gene deletion of Myd88 reduced expression of several key inflammatory cytokines, including IL6, IL23 and IL17, and prevented EAE [87-89]. Paradoxically, MyD88-signaling in B cells induced IL10, which inhibited secretion of IL-6, IL-12, IL-23, and TNF by CpG-activated DC, suppressing inflammatory T cell responses in EAE and aiding recovery from disease [93].

Toll-like receptor one in animal models of multiple sclerosis

Although Tlr1 mRNA expression is increased in the MOG35-55/CFA+PTX induced (active) model of EAE, the disease is unaffected by targeted Tlr1 gene deletion in C57BL6 mice ([87, 89]; Table 1).

Toll-like receptor two in animal models of multiple sclerosis

Increased expression of TLR2 mRNA was found in the MOG35-55/CFA+PTX induced model of EAE in C57BL/6 mice [87], as well as in the EAE model induced in rats immunized with recombinant rat MOG in IFA [33] and in mice after TMEV infection [61].

The effects of Tlr2 targeted deletion on active EAE appear to be operator dependent. While Prinz et al [87] and Hermann et al [94] reported mice deficient of TLR2 developing a normal clinical course of active EAE, Shaw et al [95] reported a mild decrease in the clinical scores in female mice, and Reynolds et al [96] described a similar result in adoptive transfer recipients of Tlr2−/− bone marrow. We reported a partial resolution of this discrepancy when we described a mild reduction in EAE clinical scores of female, but not male, Tlr2−/− C57BL/6 mice [89].

When the role of TLR2 in passive (adoptive transfer) EAE was studied, adoptive transfer of
Table 1. Toll-like receptors in EAE

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Strain mouse</th>
<th>Auto antigen</th>
<th>Adjuvant</th>
<th>Enhancement</th>
<th>Age of induction</th>
<th>Result</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLR1 -/−</td>
<td>C57BL/6</td>
<td>Male</td>
<td>MOG<sub>35–55</sub></td>
<td>CFA</td>
<td>PTX</td>
<td>7-13 weeks</td>
<td>Susceptible</td>
</tr>
<tr>
<td>TLR2 -/−</td>
<td>C57BL/6</td>
<td>Male</td>
<td>MOG<sub>35–55</sub></td>
<td>CFA</td>
<td>PTX</td>
<td>7-13 weeks</td>
<td>Susceptible</td>
</tr>
<tr>
<td>C57BL/6</td>
<td>Female</td>
<td>MOG<sub>35–55</sub></td>
<td>CFA</td>
<td>PTX</td>
<td>7-13 weeks</td>
<td>Susceptible</td>
<td>[89]</td>
</tr>
<tr>
<td>C57BL/6</td>
<td>Female</td>
<td>MOG<sub>35–55</sub></td>
<td>CFA</td>
<td>PTX</td>
<td>6-10 weeks</td>
<td>Susceptible</td>
<td>[87]</td>
</tr>
<tr>
<td>TLR3 -/−</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>TLR4 -/−</td>
<td>C57BL/6</td>
<td>Male</td>
<td>MOG<sub>35–55</sub></td>
<td>CFA</td>
<td>PTX</td>
<td>7-13 weeks</td>
<td>Susceptible</td>
</tr>
<tr>
<td>C57BL/6</td>
<td>Female</td>
<td>MOG<sub>35–55</sub></td>
<td>CFA</td>
<td>PTX</td>
<td>7-13 weeks</td>
<td>Susceptible</td>
<td>[89]</td>
</tr>
<tr>
<td>C57BL/6</td>
<td>Female</td>
<td>Recombinant rat MOG protein</td>
<td>CFA</td>
<td>PTX</td>
<td>8-12 weeks</td>
<td>Exacerbated</td>
<td>[88]</td>
</tr>
<tr>
<td>C57BL/10ScCr</td>
<td>Not specified</td>
<td>Unknown</td>
<td>MOG<sub>35–55</sub></td>
<td>CFA</td>
<td>PTX</td>
<td>9 weeks</td>
<td>Susceptible</td>
</tr>
<tr>
<td>TLR5 -/−</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>TLR6 -/−</td>
<td>C57BL/6</td>
<td>Male</td>
<td>MOG<sub>35–55</sub></td>
<td>CFA</td>
<td>PTX</td>
<td>7-13 weeks</td>
<td>Susceptible</td>
</tr>
<tr>
<td>C57BL/6</td>
<td>Female</td>
<td>MOG<sub>35–55</sub></td>
<td>CFA</td>
<td>PTX</td>
<td>7-13 weeks</td>
<td>Susceptible</td>
<td>[89]</td>
</tr>
<tr>
<td>C57BL/6</td>
<td>Female</td>
<td>Recombinant rat MOG protein</td>
<td>CFA</td>
<td>PTX</td>
<td>8-12 weeks</td>
<td>Susceptible</td>
<td>[88]</td>
</tr>
<tr>
<td>TLR7 -/−</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>TLR8 -/−</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>TLR9 -/−</td>
<td>C57BL/6</td>
<td>Male</td>
<td>MOG<sub>35–55</sub></td>
<td>CFA</td>
<td>PTX</td>
<td>7-13 weeks</td>
<td>Susceptible</td>
</tr>
<tr>
<td>C57BL/6</td>
<td>Female</td>
<td>MOG<sub>35–55</sub></td>
<td>CFA</td>
<td>PTX</td>
<td>7-13 weeks</td>
<td>Ameliorated</td>
<td>[89]</td>
</tr>
<tr>
<td>C57BL/6</td>
<td>Female</td>
<td>Recombinant rat MOG protein</td>
<td>CFA</td>
<td>PTX</td>
<td>8-12 weeks</td>
<td>Exacerbated</td>
<td>[88]</td>
</tr>
<tr>
<td>TLR10 -/−</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>MyD88 -/−</td>
<td>C57BL/6</td>
<td>Male</td>
<td>MOG<sub>35–55</sub></td>
<td>CFA</td>
<td>PTX</td>
<td>7-13 weeks</td>
<td>Resistant</td>
</tr>
<tr>
<td>C57BL/6</td>
<td>Female</td>
<td>MOG<sub>35–55</sub></td>
<td>CFA</td>
<td>PTX</td>
<td>7-13 weeks</td>
<td>Resistant</td>
<td>[89]</td>
</tr>
<tr>
<td>C57BL/6</td>
<td>Female</td>
<td>MOG<sub>35–55</sub></td>
<td>CFA</td>
<td>PTX</td>
<td>6-10 weeks</td>
<td>Resistant</td>
<td>[87]</td>
</tr>
<tr>
<td>C57BL/6</td>
<td>Not specified</td>
<td>Recombinant rat MOG protein</td>
<td>CFA</td>
<td>PTX</td>
<td>8-12 weeks</td>
<td>Resistant</td>
<td>[88]</td>
</tr>
<tr>
<td>TLR2/4 -/−</td>
<td>C57BL/6</td>
<td>Not specified</td>
<td>MOG<sub>35–55</sub></td>
<td>CFA</td>
<td>PTX</td>
<td>Not specified</td>
<td>Resistant</td>
</tr>
<tr>
<td>TLR2/9 -/−</td>
<td>C57BL/6</td>
<td>Male</td>
<td>MOG<sub>35–55</sub></td>
<td>CFA</td>
<td>PTX</td>
<td>7-13 weeks</td>
<td>Ameliorated</td>
</tr>
<tr>
<td>C57BL/6</td>
<td>Female</td>
<td>MOG<sub>35–55</sub></td>
<td>CFA</td>
<td>PTX</td>
<td>7-13 weeks</td>
<td>Ameliorated</td>
<td>[89]</td>
</tr>
</tbody>
</table>

Susceptible - no difference between knockout mice and the control group. Exacerbated - knockout mice show a significantly increase in the clinical signs of EAE when compared to the control group. Ameliorated - knockout mice show a significantly decrease in the clinical signs of EAE when compared to the control group. Resistant - knockout mice do not develop clinical signs of EAE.
T cells from \textit{Tlr2-/-} C57BL/6 mice into wild type (WT) or \textit{Tlr2-/-} mice resulted in ameliorated disease [89, 96]. The dependency of passive EAE on TLR2 expression in the recipient suggested the presence of tonic signaling through the receptor.

In this context, TLR2 signaling was associated with detectable levels of circulating IL6, reduced numbers of central (CD62L-expressing) Treg and increased recruitment of activated, IL17-screting CD4 T cells to the brain [89]. Cells differentiated in the presence of the TLR2 ligand Pam3Cys showed a \textasciitilde 50\% increase in the proportion expressing IL17, while \textit{Tlr2-/-} T cells did not exhibit obvious differences in Th17 polarization in the absence of exogenous TLR2 ligands compared to WT controls; the number of IL-17-producing \textit{Tlr2-/-} cells was also unaffected when stimulated with Pam3Cys [96].

Exacerbation of MS after active immunization with a pneumococcal vaccine has been reported [36], and Herrmann et al [94] confirmed a similar effect of \textit{Streptococcus pneumoniae} infection on EAE; this effect was TLR2 dependent. Similarly, phosphorylated dihydroceramides from the common human oral bacterium \textit{Porphyromonas gingivalis} induced dendritic cell IL6 production, decreased spinal cord Foxp3+ T cells and enhanced EAE in a TLR2-dependent manner [97, 98].

Visser et al [10, 99] hypothesized that peptidoglycan can contribute to disease development and progression in MS and EAE in the absence of infection or bacterial replication. They found that bacterial peptidoglycan was able to be substituted for heat killed Mycobacteria tuberculosis in CFA in the induction of active EAE [10]. They subsequently reported persistence of TLR ligands in the CNS in MS patients as well as in two nonhuman primate models of EAE, associated with reduced local expression of two major PGN-degrading enzymes, lysozyme and N-acetylmuramyl-l-alanine amidase [99]. As peptidoglycan can be sensed by cytoplasmic PAMP receptors (NOD1 and NOD2) in addition to TLR2, Shaw et al [95] compared induction of MOG\textsubscript{35-55}/CFA+PTX EAE in female \textit{Tir2-/-}, \textit{Nod1-/-}, \textit{Nod2-/-}, and \textit{Ripk2-/-} mice. \textit{Tir2-/-} mice developed a severity of disease similar to that reported by ourselves [89], while \textit{Nod1-/-}, \textit{Nod2-/-}, and \textit{Ripk2-/-} mice showed arguably greater protection. The authors make a good case for RIP2 at least contributing to activation of CNS-infiltrating dendritic cells, and thereby EAE, in WT/\textit{Ripk2-/-} bone marrow chimeric mice [95].

As for MS, DAMPs that are TLR2 ligands have also been associated with EAE. For example, HMGB1 has been identified in active EAE lesions and its levels correlate with active inflammation [33]. Increased serum concentrations of 15-\alpha-hydroxicholestene (15-HC) have also been identified in mice with secondary progressive EAE and 15-HC activated microglia, macrophages and astrocytes, and enhanced expression of TNF, iNOS and CCL2 mRNA in CNS-infiltrating monocytes/macrophages, through a pathway involving TLR2 [100].

Toll-like receptor three in animal models of multiple sclerosis

Although increased expression of TLR3 was not found in the MOG\textsubscript{35-55}/CFA+PTX induced model of EAE in C57BL/6 mice [87], it was in mice susceptible to demyelinating disease (SJL strain) after TMEV infection, but not in resistant mice [61].

Repeated i.p. injections of the TLR3 ligand poly I:C (a double-stranded RNA analog) induced expression of endogenous IFN\textbeta and the peripheral induction of the CC chemokine CCL2, and strongly inhibited EAE induced in SJL/J mice by immunization of PLP peptide 139-151 in CFA [101].

Toll-like receptor four in animal models of multiple sclerosis

Increased expression of \textit{Tir4} mRNA was found in the MOG\textsubscript{35-55}/CFA+PTX induced model of EAE in C57BL/6 mice [87], as well as in the Dark Agouti rat EAE model with MOG emulsified in incomplete Freud's adjuvant [33].

Conflicting outcomes have been published in studies of EAE susceptibility in mice deficient in TLR4. C57BL/6.\textit{Tir4} deficient mice showed increased Il6 and Il23 mRNA expression by myeloid DC, an increased proportion of T cells producing IL17 and increased EAE clinical scores following immunization with recombinant rat MOG [88]. In contrast, in the MOG\textsubscript{35-55} peptide-induced model, the severity of disease
was unaffected by targeted deletion of Tlr4 [89, 102], unless a marginal dose of M. tuberculosis was used in the inoculum, in which case the severity of disease was sometimes reduced compared to C57BL/6 in a mechanism that appeared to involve pertussis toxin (PTX) signaling through TLR4 [102]. In a model of active EAE induced in C57BL/6, Rag1-/− hosts reconstituted by CD4 T cell adoptive transfer from either WT or Tlr4−/− mice, the prevalence of EAE induced by MOG35-55/CFA+PTX was halved in the recipients of Tlr4−/− T cells [103]. The protected mice had reduced numbers of infiltrating cells and consequently reductions in Il17, Ifng, Ccr6 and Ccl2 transcripts in total CNS mRNA analyses.

The TLR4 ligand poly-γ-glutamic acid from Bacillus subtilis signals naive CD4+ T cells via TLR4 and MyD88 to induce TGFβ and upregulate Foxp3 expression, suppressing EAE in the C57BL/6 MOG35-55/CFA+PTX model [104]. Complement C5a synergizes with TLR4 ligation by LPS to induce APC to produce serum factors, including IL6, that drive Th17-cell differentiation [105]. In the passive (adoptive transfer) model of MOG38-50/CFA, if the T cells to be adoptively transferred were first re-stimulated in vitro in the presence of serum from mice treated with C5a in addition to LPS, a greater severity of EAE resulted [105].

Toll-like receptor five in animal models of multiple sclerosis

Little is known about the role of TLR5 in animal models of MS. TLR5 was not increased in expression in the MOG35-55/CFA+PTX induced model of EAE in C57BL/6 mice [87].

Toll-like receptor six in animal models of multiple sclerosis

Increased expression of Tlr6 mRNA was found in the MOG35-55/CFA+PTX induced model of EAE in C57BL/6 mice [87], as well as in mice susceptible to demyelinating disease (SJL strain) after TMEV infection, but not in resistant mice [61]. Intra-axonal accumulations of TLR8 protein were confirmed for the MOG35-55/CFA+PTX model [108]. Little else is known about the potential role of TLR8 in animal models of MS.

Toll-like receptor seven in animal models of multiple sclerosis

Increased expression of Tlr7 mRNA was found in the MOG35-55/CFA+PTX induced model of EAE in C57BL/6 mice [87] as well as in mice after TMEV infection [61]. Repeated low dose administration of the synthetic TLR7 agonist 9-benzyl-8-hydroxy-2-(2-methoxyethoxy) adenine upregulated expression of the TLR signal inhibitors IRAK-M, and SHIP-1, and induced hyporesponsiveness to TLR2, -7 and -9, resulting in reduced EAE clinical scores in the MOG35-55/CFA+PTX induced model [106]. The TLR7 agonist Imiquimod, administered on days one, three and five post administration of MOG35-55/CFA+PTX also delayed disease onset and reduced EAE clinical scores; the treatment was associated with the endogenous production of IFNβ [107].

Toll-like receptor eight in animal models of multiple sclerosis

Increased expression of Tlr8 mRNA was found in the MOG35-55/CFA+PTX induced model of EAE in C57BL/6 mice [87] as well as in mice susceptible to demyelinating disease (SJL strain) after TMEV infection, but not in resistant mice [61]. Intra-axonal accumulations of TLR8 protein were confirmed for the MOG35-55/CFA+PTX model [108]. Little else is known about the potential role of TLR8 in animal models of MS.

Toll-like receptor nine in animal models of multiple sclerosis

Increased expression of Tlr9 mRNA was found in the MOG35-55/CFA+PTX induced model of EAE in C57BL/6 mice [87], as well as in mice after TMEV infection [61]. Whereas C57BL/6/Tlr9−/− mice showed a decreased severity of disease following EAE induction with MOG35-55 [87], disease was exacerbated in TLR9-deficient mice treated with recombinant rat MOG [88]. In our hands, the EAE clinical scores were reduced in female, but not male, C57BL/6 mice in which disease was induced with MOG35-55/CFA+PTX [89]. Lampropoulou et al [93] examined EAE susceptibility of mice bearing TLR9-deficiency on only B cells by using a mixed bone marrow chimeraic system with µMT mice (carrying a gene deletion of the µ heavy chain) and Tlr9−/−Cd40−/− mice as donors and WT mice as recipients. The onset and recovery from EAE was indistinguishable from that of control mice [93]. Consistent with TLR9 playing a role in EAE pathogenesis, TLR9 ligation with CpG DNA was
able to induce EAE. Mice that expressed the transgenic TCR 5B6, which is specific for the PLP peptide 139-151, on the EAE-resistant (EAE-resistant) B10.S background rarely developed spontaneous EAE, in contrast to 5B6 transgenic mice on the EAE-susceptible SJL background. The relative resistance to spontaneous EAE in transgenic B10.S mice appeared to be due to a lower activation state of the APCs. When APCs in 5B6 transgenic B10.S mice were activated by TLR9 ligation with CpG DNA, T cell tolerance was broken, resulting in encephalomyelitis [17]. Similar results were obtained in an analogous, but non-transgenic system: Adult SJL mice injected i.p. with a PLP peptide emulsified in IFA fail to mount proliferative or cytokine responses and are protected from EAE upon subsequent challenge with the PLP/CFA. Again, the tolerized PLP-specific lymph node cells regained the ability to transfer EAE once reactivated in vitro in the presence of CpG oligonucleotides [109]. Finally, a combination of TLR4 and TLR9 agonists (CpG-ODN and LPS) was able to replace mycobacteria in Freunds adjuvant to induce EAE in Lewis rats immunized with MBP peptide 68-86 [110].

Toll-like receptors eleven, twelve and thirteen in animal models of multiple sclerosis

Nothing has been published on the potential roles of these TLR in animal models of MS.

Importance of toll-like receptors to adjuvants used in experimental autoimmune encephalomyelitis

The induction of EAE commonly involves the use of CFA, which contains Mycobacteria tuberculosis. While the adjuvant activity of M. tuberculosis is primarily mediated by NOD2 recognition of muramyl dipeptide, TLR do play nonredundant roles in cytokine responses to mycobacteria as cell lines transfected with human TLR2 or TLR4 were responsive to M. tuberculosis [111]. The mycobacterial TLR2 ligand 19 kDa triacyl lipoprotein (LpqH), and the NOD2 ligand muramyl dipeptide synergized in the induction of cytokines, and this synergism was lost in cells defective in either TLR2 or NOD2 [111], TLR1 contributes to the TLR2 recognition of the 19 kDa lipoprotein as a component of the TLR1/TLR2 heterodimer [112-114]. Despite the ability of the M. tuberculosis 19 kDa lipoprotein to activate innate immune functions early in infection, it induces TLR2-dependent inhibition of MHC-II expression and Ag processing during later phases of macrophage infection [113].

Several other mycobacterial lipoproteins stimulate TNF secretion by macrophages via TLR2 ligation, including PhoS1 (38-kDa lipoprotein; [115], LprA [116] and LprG [117]. Like the 19 kDa lipoprotein, most of these subsequently inhibit MHC-II expression and Ag processing [115-117]. Mycobacterial phosphatidyl-myo-inositol mannosides can activate primary macrophages to secrete TNF via TLR2 [118] and TLR4 [119] and mycobacterial DNA contributes to the adjuvant properties of BCG [120] via the recognition of CpG motifs by TLR9 [121].

As there is no evidence of an adjuvanted immunization event in the initiation of MS, the dependence of EAE on induction by CFA containing M. tuberculosis raises the concern that TLR-dependencies identified in the active model of EAE represent limitations of the model, and not characteristics of the disease. In our own work, we partly addressed this issue by examining the effects of targeted TLR gene deletion on the passive (adoptive transfer) model of EAE. For both TLR2 and TLR9, we confirmed dependence [89]. We did not examine the role of TLR4 in passive EAE, because we found no evidence of a role in active EAE.

In 1955, Lee and Olitsky [122] found that pretreatment of EAE resistant mice with Bordetella pertussis (then termed Hemophilis pertussis) vaccine (killed organisms) increased susceptibility to EAE. Wiener, et al [123] subsequently reported that Bordetella pertussis organisms could be substituted for the mycobacteria in Freud’s oily adjuvant in the induction of EAE, and Levine and Wenk [124], found that the killed cellular vaccine could be replaced with an aqueous pertussis vaccine (US Patent 24,748 “Pertussis Vaccine Preparation, the supernatant produced after washing phenol treated cells for one-to-three weeks). Levine et al [125] used this latter system as a platform in an attempt to identify the active constituent of Bordetella pertussis. In these and subsequent experiments, the ability of Bordetella pertussis and its soluble extracts to induce vascular permeability in the CNS was associated with the ability to induce EAE; an active fraction was highly purified by electrophoresis on a sucrose
density-gradient column and termed “pertussigen” [126]. The major molecular mechanism appeared to be via vasoactive amine sensitization, consistent with pertussigen being PTX [83]. Using intravital microscopy of the murine cerebrovascular system, Kerfoot et al [102] demonstrated that PTX alone induces the recruitment of leukocytes, including activated T cells, via induction of P-selectin expression; P-selectin blockade prevented the PTX-induced increase in permeability across the blood-brain barrier, demonstrating that permeability is a secondary result of recruitment, rather than the primary mechanism by which PTX induces disease [102]. This effect on the vasculature is enhanced by its effect on peripheral naïve T cells, which undergo proliferation, cytokine polarization, increased expression of CD49d and reduction in CD62L [127]. Kerfoot et al [102] proposed that PTX-induced leukocyte recruitment is dependent on TLR4 signaling and suggested that the disease-inducing mechanisms initiated by PTX are also at least partly dependent on TLR4. They illustrated independent experiments in which EAE in C57BL/6.Tlr4−/− mice was either ameliorated, prevented, or unaffected. In our own work, we found no significant role for TLR4 in active EAE, and while clinical signs were ameliorated in C57BL/6.Tlr4−/− mice in the passive model, the inhibition of disease was not as great as in the mice that did not receive PTX, indicating that, if PTX does act through TLR4, it is also likely to have activities mediated by other mechanisms in this model [89]. A partial explanation for these discrepancies is provided by the finding of Millward et al [128] that IFNγ induces expression of the chemokines CXCL10 and CCL5, which synergize with PTX to promote T cell entry to the central nervous system. Neither IFNγ-induced chemokine expression alone, nor PTX alone, led to histologically detectable inflammation [128]. These results suggest that the ephemeral TLR4-dependence of the action of PTX may not be due to direct activity, but rather due to TLR4 signaling enhancing the production of IFNγ.

A model of the role of toll-like receptors in multiple sclerosis

Three groups of cytokines appear to play key roles in both MS and EAE. The production of IL17-secreting CD4 (Th17) T cells appears to play a consistent role in generating CNS autoimmune damage in both diseases [45-49, 129]. The production of this lineage(s) of cells is dependent on IL23, the expression of which is dependent on that of TGFβ and IL6. In contrast, IL2, IL4, IFNγ, and IL27 inhibit the differentiation of Th17 cells [130]. TGFβ is produced within the intestinal immune system in response to the development of a normal microflora [131, 132] and IL6 is generated in response to ligation of TLR2 and TLR4 [133-136].

Members of the second group of cytokines also contribute to disease pathogenesis: IL12 drives the production of IFNγ, which in turn contributes to leukocyte migration to the CNS, vascular adhesion and exocytosis, by upregulating the expression of ICAM-1 and VCAM-1 on CNS vasculature [137-139].

Lymphocytes obtained from the blood of RRMS patients have an increased tendency to express both ROR-γt and T-bet, and secrete both IFNγ and IL17, following expansion in the presence of IL23. IFNγ/IL17 dual expressing T cells showed a selective advantage in migrating across blood-brain barrier endothelial cells and T lymphocytes coexpressing IL17 and IFNγ are found disproportionately in the brain tissue of MS patients [139]. Similarly, during the development of EAE, IFNγ in the spinal cord was produced almost exclusively by cells that had also produced IL17 [140].

Ligation of TLR2 or TLR4 on myeloid DC can induce the production of IL23, which supports the production of IL17A by CD4 T cells [141] as well as the emergence of IL17/IFNγ-producing cells [139, 140]. Conditioned media from PBMC’s stimulated with a TLR4 agonist were able to elicit IL17 secretion by CD4 T cells – even in the absence of APC [142]. TLR4 ligation also promotes the production of IL12 p70, which in its turn induces IFNγ [143]. These consequences of TLR ligation can therefore contribute to CNS autoimmunity, and may do so even in the absence of other causes of IL17 and IFNγ polarisation.

The degree of partial redundancy in this activity was illustrated by our experiments on the role of Tlr2−/− in passive EAE: adoptive transfers were performed in which TLR2 was deleted.
from either the donor T cells, the recipient, both or neither. Adoptive transfer of WT lymphocytes into WT recipients resulted in robust signs of EAE as expected. The adoptive transfer of C57BL/6.Tlr2+/+ into WT recipients resulted in ameliorated disease, similar to active EAE in female C57BL/6. Tlr2−/− mice. In contrast, the transfer of WT cells into C57BL/6.Tlr2−/− recipients resulted in complete protection; suggesting that the presence of TLR2 at the induction of disease creates a dependence on TLR2 signaling in the effector phase [89]. Given the role of IL6 in Th17 cell differentiation, via sequential engagement of the IL21 and IL-23 pathways, our finding of IL6 participating in a protective mechanism.

Opposing the actions of CNS-damaging IL17/IFNγ–producing cells is type I IFN which induces IL27, which in turn induces the secretion of IL10 [144-148]. IFNβ directly decreases production of IL17 by T cells in a dose-dependent manner. It also induces the production of IL27 and acts in synergy with IL27 to inhibit the production of IL17 and promote the secretion of IL10 [148]. IL10 inhibits the production of IFNγ by downregulating IL12 [149]. The production of IL10 is, itself, suppressed by either IL1β [149] or the combination of IFNγ and TLR2 ligation. IFNγ can alter TLR2-induced signal transduction by increasing GSK3 activity and suppressing MAPK activation, leading to diminished IL-10 production [150].

Plasmacytoid DC are the primary source of type I IFN and predominantly express TLR7 and TLR9. There is some suggestion that the TLR9/IFN axis is deficient in MS patients [58]. The EAE model does not appear to mimic the activities of TLR9 in this regard [17, 110]. It is possible that this discrepancy results from the manner of experimental administration of the TLR9 ligands in these experiments, as it was unlikely to result in targeting of TLR9 ligands to plasmacytoid DC. TLR3 ligation also upregulates IFNα:1 [151], resulting in the production of IL10 and downregulation of IL12 and IL23 [25]. TLR3 is widely expressed in the CNS [19, 25, 37, 38], including on cerebral endothelial cells [28] and the presence of its endogenous ligand statmin in the CNS suggests the possibility of anti-inflammatory, homeostatic pathways.

Acknowledgements

This work was funded by the Australian National Health and Medical Research Council, the Australian Research Council (NHMRC), The Lions Clubs of Australia and Multiple Sclerosis Research Australia. AGB is supported by an NHMRC Senior Research Fellowship. We thank Dr Margaret Jordan and Mr Benjamin Crowley for corrections and critical comments.

Address correspondence to: Dr. Alan G Baxter, Comparative Genomics Centre, Molecular Sciences Building 21, James Cook University, Townsville, QLD 4811, Australia. Phone: 61-7-4781 6265; Fax: 61-7-4781 6078; E-mail: Alan.Baxter@jcu.edu.au

References

86

Am J Clin Exp Immunol 2013;2(1):75-93
Role of TLR in MS and EAE

